Broad-Spectrum Neutralization of Pore-Forming Toxins with Human Erythrocyte Membrane-Coated Nanosponges.

نویسندگان

  • Yijie Chen
  • Mengchun Chen
  • Yue Zhang
  • Joo Hee Lee
  • Tamara Escajadillo
  • Hua Gong
  • Ronnie H Fang
  • Weiwei Gao
  • Victor Nizet
  • Liangfang Zhang
چکیده

Neutralization of bacterial toxins has become a compelling approach to treating bacterial infections as it may pose less selective pressure for the development of bacterial resistance. Currently, the majority of toxin neutralization platforms act by targeting the molecular structure of the toxin, which requires toxin identification and customized design for different diseases. Therefore, their development has been challenged by the enormous number and complexity of bacterial toxins. Herein, biomimetic toxin nanosponges are formulated by coating membranes of human red blood cells (hRBCs) onto polymeric nanoparticles, which act as a toxin decoy to absorb and neutralize a broad-spectrum of hemolytic toxins regardless of their molecular structure. When tested with model pore-forming toxins, including melittin, α-hemolysin of methicillin-resistant Staphylococcus aureus, listeriolysin O of Listeria monocytogenes, and streptolysin O of Group A Streptococcus, the hRBC nanosponges are able to completely inhibit toxin-induced hemolysis in a concentration-dependent manner. In addition, the nanosponge-detained toxins show no cytotoxicity when tested on human umbilical vein endothelial cells and no lethality when injected into mice, which together indicate effective toxin neutralization. Overall, these results demonstrate the broad applicability and high effectiveness of the hRBC nanosponges as a novel antivirulence platform against hemolytic toxins from various strains of bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle-detained toxins for safe and effective vaccination

Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major chall...

متن کامل

A Novel Biomimetic Nanosponge Protects the Retina from the Enterococcus faecalis Cytolysin

Intraocular infections are a potentially blinding complication of common ocular surgeries and traumatic eye injuries. Bacterial toxins synthesized in the eye can damage intraocular tissue, often resulting in poor visual outcomes. Enteroccocus faecalis causes blinding infections and is responsible for 8 to 17% of postoperative endophthalmitis cases. These infections are increasingly difficult to...

متن کامل

A biomimetic nanosponge that absorbs pore-forming toxins

Detoxification treatments such as toxin-targeted anti-virulence therapy offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera, monoclonal antibodies, small-molecule inhibitors and molecularly imprinted polymers act by targeting the molecular structures of ...

متن کامل

Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks.

Colloidal gels consisting of oppositely charged nanoparticles are increasingly utilized for drug delivery and tissue engineering. Meanwhile, cell membrane-coated nanoparticles are becoming a compelling biomimetic system for innovative therapeutics. Here, we demonstrate the successful use of cell membrane-coated nanoparticles as building blocks to formulate a colloidal gel that gelates entirely ...

متن کامل

Redefining cholesterol's role in the mechanism of the cholesterol-dependent cytolysins.

The cholesterol-dependent cytolysins (CDCs) constitute a large family of pore-forming toxins that function exclusively on cholesterol-containing membranes. A detailed analysis of the various stages in the cytolytic mechanism of three members of the CDC family revealed that significant depletion of cholesterol from the erythrocyte membrane stalls these toxins in the prepore complex. Therefore, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced healthcare materials

دوره   شماره 

صفحات  -

تاریخ انتشار 2018